Translate
lunedì 15 aprile 2013
Duplicazione DNA
La duplicazione del DNA è il meccanismo molecolare attraverso cui viene prodotta una copia del DNA cellulare. Ogni volta che una cellula si divide, infatti, l'intero genoma deve essere duplicato per poter essere trasmesso alla progenie. Il meccanismo della replicazione è complesso e richiede l'intervento di numerosi enzimi e di proteine iniziatrici. Il processo di replicazione del DNA si definisce semiconservativo: il doppio filamento di DNA parentale funge da stampo per la sintesi di due filamenti figli complementari.
L'enzima basilare della replicazione è la DNA polimerasi, che catalizza il legame tra i deossiribonucleotidi trifosfato
I procarioti possiedono cinque tipi di DNA polimerasi:
DNA polimerasi I: coinvolta nella riparazione del DNA e nella rimozione degli inneschi dei frammenti di Okazaki. Possiede attività esonucleasica sia in direzione 5'->3', sia in direzione 3'->5'. Quest'ultima attività permette la lettura delle basi precedentemente unite (proofreading o "lettura delle bozze") e l'eventuale correzione in caso di errore. La velocità di polimerizzazione è di circa 14-20 nucleotidi/secondo.
DNA polimerasi II: indotta da danni al DNA per riparazione incline all'errore . Ha attività polimerasica 5'->3' ed esonucleasica 3'->5'. Velocità di polimerizzazione di circa 40 nucleotidi/secondo.
DNA polimerasi III: l'enzima principale per la replicazione, con attività polimerasica 5'->3' ed esonucleasica 3'->5' (proofreading). È attiva sia nella sintesi del filamento guida, sia in quella dei frammenti di Okazaki. Ha una struttura particolarmente più complessa delle due precedenti, risulta costituito da due nuclei, a loro volta formati da subunità α ε θ, i due nuclei sono uniti da una subunità τ ; sono inoltre presenti strutture addizionali dette subunità χ e ψ , che vanno a costituire i complessi γ o di pinza, che permettono un incremento esponenziale del processo duplicativo. Velocità di polimerizzazione di circa 250-1000 nucleotidi/secondo.
DNA polimerasi IV e DNA polimerasi V: anch'esse coinvolte nella riparazione incline all'errore.
Polimerasi negli eucarioti [modifica]
Le polimerasi degli eucarioti sono invece:
DNA polimerasi α: è associata a una primasi (enzima che sintetizza i primer di RNA) e procede all'allungamento degli RNA-primer con alcune decine di deossiribonucleotidi (circa 50-100).
DNA polimerasi β: coinvolta nella riparazione del DNA, in particolare nei processi di riparazione per escissione delle basi
DNA polimerasi γ: replica il DNA mitocondriale
DNA polimerasi δ: l'enzima principale della replicazione eucariotica. Sintetizza sia il filamento leading, sia il filamento lagging. Quando la polimerasi raggiunge il frammento di Okazaki precedentemente sintetizzato, continua a muoversi lungo il filamento stampo lagging, spostando il primer a RNA che verrà poi rimosso da una endonucleasi (FEN-1). L'interruzione tra i desossiribonucleotidi è poi saldata da una ligasi.
DNA polimerasi ε: interviene nei meccanismi di riparazione del DNA in seguito ai processi di riparazione per escissione dei nucleotidi.
DUPLICAZIONE
Enzimi coinvolti nella replicazione del DNA
Schema della forca replicativa del DNA
La replicazione del DNA inizia su specifiche sequenze dette origini di replicazione, in numero di circa 10.000 nel genoma umano e della lunghezza di migliaia di nucleotidi. Tali sequenze sono particolarmente ricche di A e T, dal momento che queste due basi si legano con soli due legami a idrogeno al posto dei tre tra G e C, e sono quindi più facilmente scindibili. Nell'uomo vi è un numero variabile di origini di replicazione su ciascuno dei cromosomi, distanziate da poche decine di migliaia sino a centinaia di migliaia di nucleotidi e durante il processo non si attiva una sola origine di replicazione per volta , ma batterie di 20-80 origini di replicazione dette unità di replicazione. Ciascuna unità di replicazione è attivata in un momento diverso della fase S o il processo richiederebbe circa 1 ora a fronte di una media reale di 8 ore. Sembra che l'attivazione immediata o tardiva delle unità di replicazione dipenda dallo stato della cromatina in cui sono immerse e non dalla velocità della DNA polimerasi che è più o meno costante. L'eucromatina è replicata all'inizio della fase S, perché più prontamente raggiungibile e meno condensata, mentre l'eterocromatina è replicata tardivamente perché più condensata ed inaccessibile. Complessi proteici chiamati ORC si legano alle origini di replicazione durante la fase G1 del ciclo cellulare, assieme ai caricatori Cdc6 e Cdt1 della DNA elicasi Mcm.L'attivazione di specifiche proteine chinasi dipendenti da ciclina nella fase S promuove il distacco di Cdc6 e Cdt1 da ORC e dalle origini di replicazione in seguito alla loro fosforilazione, che le inattiva, segnalando che la cellula sta per effettuare sintesi di DNA. Attivano inoltre Mcm e il complesso ORC fosforilandolo. Nuovi complessi prereplicativi non vengono più assemblati sino alla fase M che resetterà le fluttuazioni di Cdk che così non potranno più fosforilare le loro proteine bersaglio e quindi non potranno attivare nuove origini di replicazione.
La DNA polimerasi non può iniziare a sintetizzare DNA immediatamente, perché ha bisogno di riconoscere un'estremità 3'-OH integra e normalmente questa non esiste sul singolo filamento. Per cui, prima della sintesi da parte di questo enzima, negli eucarioti interviene la DNA polimerasi α/primasi (che è un complesso proteico composto da 4 subunuità proteiche: 2 con attività polimerasica e 2 con attività primasica). La DNA polimerasi α/primasi procede in direzione 5'-3' sintetizzando brevi tratti di RNA di una decina di nucleotidi, in seguito le subunità con attività DNA polimerasica sintetizzano un frammento di 50-100 bp di DNA formando quindi brevi tratti ibridi DNA\RNA. Negli eucarioti i primer vengono sintetizzati ogni 100 - 400 nucleotidi. A questo punto la DNA polimerasi δ ha a disposizione estremità 3'-OH a partire dalle quali sintetizzare il nuovo filamento. Sul filamento leader, in direzione 5'-3' il filamento "figlio" è sintetizzato in modo continuo, ma sul filamento ritardato non può esserlo, dal momento che le DNA polimerasi sintetizzano solo in direzione 5'-3'. Per questo motivo la sintesi è spezzata e procede in direzione 5'-3' formando a partire dai primer tratti di 100-400 bp detti frammenti di Okazaki, intervallati da nick. Il filamento ritardato è piegato all'indietro nella forcella della replicazione. Quando una DNA polimerasi incontra il 5' del frammento di Okazaki sintetizzato precedentemente si stacca e ricomincia a sintetizzare più a valle. Successivamente l'RNA primer viene degradato da diversi enzimi e sostituito da DNA da parte della DNA Pol δ, i nick creatisi sul filamento ritardato sono uniti dalla DNA ligasi. Tali nick sono sfruttati nella correzione degli appaiamenti sbagliati diretta dal filamento. In realtà quasi tutti i passaggi sono svolti da un unico ed enorme complesso proteico di più di 1.000 kDa che si associa al DNA e lo fa scorrere sintetizzandolo, esso comprende le elicasi, le polimerasi e così via. Inoltre, siccome un giro di un'elica di DNA è costituito da 10 coppie di nucleotidi è pressoché impossibile immaginare che la forcella replicativa generata dalle elicasi giri altrettanto velocemente, per cui in realtà la topoisomerasi I interviene attaccandosi al doppio filamento e creando un nick che usa come perno per far ruotare la doppia elica; tale processo non comporta l'utilizzo di ATP a differenza delle elicasi e della DNA ligasi.
Il DNA umano si trova però normalmente avvolto a ottameri proteici (formati da istoni) detti nucleosomi per 1,7 giri e 147 coppie di nucleotidi. Ciascun nucleosoma è diviso dal successivo da un tratto di DNA linker di lunghezza variabile tra 7-80 nucleotidi, per un totale di circa 200 nucleotidi tra DNA linker e DNA avvolto sul nucleosoma. Bisogna inoltre tener conto dell'istone H1 che aiuta nel superavvolgimento del DNA e di proteine non istoniche che nel complesso hanno un peso pari agli istoni stessi. Queste formazioni proteiche costituiscono un intralcio alla velocità di replicazione già nell'eucromatina, ancor di più nell'eterocromatina dove il DNA è ulteriormente compattato. Per districare il DNA e renderlo disponibile alla sintesi agiscono dei complessi di rimodellamento della cromatina che idrolizzano ATP in ADP+P prima che intervenga l'elicasi. Tali complessi, costituite da proteine con carica negativa, distaccano il doppio filamento dal nucleosoma e lo mantengono distaccato per 10-50 millisecondi, per farlo si avvalgono dell'aiuto di chaperoni anch'essi con carica negativa che rimuovono dall'ottamero i dimeri istonici H2A-H2B ripartendoli equamente, uno per ciascun nuovo nucleosoma in formazione una volta completata la sintesi di DNA; il tetramero H3-H4 invece non viene sostituito. Ciò significa che nel filamento neosintetizzato le modificazioni degli istoni H3-H4 sono ereditate ma soltanto in metà dei suoi nucleosomi. Il resto verrà coerentemente completato da complessi lettore-scrittore che lo ristabiliranno qual era nel filamento originario. La disposizione dell'istone H1 ristabilisce la conformazione in fibra di 30 nm della cromatina che in seguito può andare incontro ad ulteriore condensazione.
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento