Translate

lunedì 6 maggio 2013

Sintesi proteica


La traduzione, o sintesi proteica!

La sintesi proteica  è il processo biochimico attraverso il quale l'informazione genetica contenuta nel mRNA (RNA messaggero), viene convertita in proteine che svolgono nella cellula un'ampia gamma di funzioni. La sintesi proteica inizia da un filamento di mRNA, prodotto a partire da un gene sul DNA attraverso il processo di trascrizione. Questo filamento è usato come stampo per la produzione di una specifica proteina.

L'mRNA è il trascritto di un gene nel linguaggio dell'RNA, che prevede quattro basi, identiche al DNA fatta eccezione per l'uracile che sostituisce la timina. Un mRNA maturo appena esportato dalla nucleoplasma attraverso la membrana nucleare è stato inoltre modificato mediante aggiunta di una 5'-metilguanina all'estremità 5' (cappuccio dell'mRNA). Il ribosoma legge le basi dell'mRNA a triplette (dette codoni) e a ciascuna tripletta (per un totale di 64, che si ottiene elevando il numero delle basi dell'mRNA, cioè 4, al numero di cifre di una tripletta, 3) fa corrispondere un amminoacido. In realtà, alcune triplette codificano per lo stesso amminoacido e solo due amminoacidi sono specificati da una sola tripletta. La lunghezza di un mRNA varia in funzione della lunghezza degli esoni del gene trascritto.

Il tRNA è una piccola molecola di RNA composta mediamente da 80 nucleotidi. Oltre ai nucleotidi convenzionali per l'RNA vi sono anche nucleotidi modificati.. Ha una caratteristica forma simile a quella di un quadrifoglio che assume per la formazione di legami idrogeno tra le doppie eliche ripiegate in alcuni tratti della sua struttura. Di norma i nucleotidi modificati tendono a non prendere parte a questi legami. Vi sono quattro aree di particolare interesse in ciascuna molecola di tRNA, in particolare due anse, dette ansa D e ansa T, l'anticodone, specifico per ciascun tRNA e complementare ad un codone del mRNA e l'attacco dell'amminoacido corrispondente al codone all'estremità 3'. Esistono più tRNA per uno stesso amminoacido (infatti vi sono solo 48 anticodoni diversi codificati da circa 500 geni) e nel contempo un tRNA può associarsi a più di un codone. Questo accade perché ciascun anticodone di tRNA si associa saldamente solo alle prime due basi di un codone, mentre è poco specifico e più tollerante per la terza base, tanto che non raramente si verificano appaiamenti sbagliati, causando il fenomeno dello wobbling cioè il tentennamento della terza posizione. Questo spiega anche perché la serie di codoni che specifica uno stesso amminoacido è identica nelle prime due basi e differisce solo nella terza, con poche eccezioni. I tRNA che intervengono nella sintesi proteica sono il prodotto di pre-tRNA più lunghi che vengono modificati nel nucleo grazie ad uno speciale splicing che segue un meccanismo "taglia e cuci", diverso da quello comune che prevede la formazione di una sorta di cappio per rimuovere le sequenze introniche. Successivamente un amminoacil-tRNA-sintetasi specifica per ciascun amminoacido (circa 20 tipi diversi) accoppia covalentemente l'amminoacido corrispondente all'estremità 3' di ciascun tRNA. Successivamente l'amminoacido adenilato è legato dall'amminoacil-tRNA-sintetasi al tRNA con fuoriuscita di AMP. L'amminoacil-tRNA-sintetasi sceglie l'amminoacido corretto da attaccare al tRNA in parte perché ha un'affinità maggiore per quell'amminoacido rispetto a tutti gli altri e in parte perché ne è facilitata dato che il suo sito attivo esclude tutti gli altri amminoacidi più grandi. Successivamente, quando anche tRNA si lega all'enzima, l'amminoacido si sposta in un secondo sito attivo ancora più specifico che funge da meccanismo di controllo. Un meccanismo simile avviene con la correzione esonucleolitica delle bozze da parte della DNA polimerasi. In questo modo la amminoacil-tRNA-sintetasi raggiunge un'accuratezza di 1 errore ogni 40.000 accoppiamenti.


Il ribosoma è un grande ribozima e rappresenta la macchina esecutrice della sintesi proteica. Possiede due subunità, la maggiore (60 S) e la minore (40 S), la maggiore contiene gli rRNA 28 S, 5.8 S e 5 S, mentre la minore contiene l'rRNA 18 S. Gli rRNA così come i ribosomi sono sintetizzati nel nucleolo all'interno del nucleo, i primi dalla RNA polimerasi III. Oltre ai quattro tipi di rRNA specificati, ciascun ribosoma contiene circa 50 proteine diverse; è dunque composto per i 2/3 da RNA e per 1/3 da proteine. La subunità minore funge da sostegno e da sito di ingresso dell'mRNA da tradurre, mentre la subunità maggiore è la principale macchina catalizzatrice del complesso. Quando sono unite le due subunità possiedono quattro siti d'attacco, uno per l'mRNA e i siti E, P, A per i tRNA in arrivo o in uscita. I primi due sono i più voluminosi e contengono tRNA i cui anticodoni sono legati al codone dell'mRNA mentre il sito E contiene il tRNA che si sta per staccare dal ribosoma poiché ha già aggiunto il suo amminoacido al polipeptide in formazione. Un ribosoma umano aggiunge circa 2 amminoacidi al secondo. Ciascuna cellula contiene alcuni milioni di ribosomi sparsi nel citoplasma con le subunità distaccate fra loro, oppure in attiva sintesi con le subunità unite, aggregati in polisomi (gruppi di decine di ribosomi in sintesi proteica) oppure attaccati alla membrana del reticolo endoplasmatico rugoso (RER). Le cellule in attiva sintesi ne contengono di più rispetto ad altre meno attive.

Sintesi proteica negli eucarioti.

La sintesi proteica inizia sempre dall'N-terminale di una proteina in formazione verso il suo C-terminale. Il primo amminoacil-tRNA ad essere aggiunto è invariabilmente quello con legata metionina, detto tRNA iniziatore, poiché la sequenza d'inizio di ciascun mRNA è AUG. Generalmente la metionina è sempre rimossa alla fine della traduzione da una proteasi specifica. La subunità minore del ribosoma si attacca all'estremità 5' dell'mRNA che viene riconosciuta poiché possiede un cappuccio  e i fattori di inizio , poi, una volta trovata, vi si attacca anche la subunità maggiore e quindi il ribozima cerca la prima tripletta che è il suo segnale d'inizio della sintesi proteica. L'attacco del tRNA iniziatore al sito P della subunità minore del ribosoma in assenza di quella maggiore è aiutato dal fattore di inizio  che lega GTP, il quale è idrolizzato quando la subunità maggiore si associa alla minore. Il movimento della subunità minore è ulteriormente facilitato dall'idrolisi . Il tRNA si lega al sito P del ribosoma, mentre il tRNA con l'anticodone corrispondente al codone successivo nell'mRNA legato al fattore d'allungamento si attacca nel sito A. Esso unisce il tRNA al sito A ed effettua un controllo di qualità per non venire aggiunto se la corrispondenza codone-anticodone non è corretta; probabilmente questo avviene per una maggiore affinità tra le molecole, anche se non è stato ancora chiarito precisamente il meccanismo. Esso inoltre lega il tRNA sull'mRNA in una conformazione curva che impedisce l'immediato legame dell'amminoacido legato al tRNA cui è attaccato al resto del polipeptide in crescita. Una volta riconosciuto un appaiamento corretto, l'rRNA sulla subunità minore idrolizza il GTP legato e si stacca dal tRNA. Sembra che una corrispondenza corretta tra codone ed anticodone sia ulteriormente facilitata dalla formazione di legami idrogeno tra la subunità minore del ribosoma e la stessa coppia codone-anticodone. A questo punto vi sono quindi sul ribosoma due tRNA adiacenti uniti ciascuno al proprio codone sull'mRNA. A questo punto la peptidil transferasi, contenuta nella subunità maggiore del ribosoma, catalizza lo spostamento del legame che unisce l'amminoacido al suo tRNA nel sito P formando un legame peptidico tra l'amminoacido del tRNA presso il sito P e quello presso il sito A. La subunità maggiore si sposta quindi di tre nucleotidi verso l'estremità 3' dell'mRNA e così fa anche la subunità minore così che, alla fine degli spostamenti, il primo tRNA aggiunto si trova nel sito E e il secondo nel sito P mentre nel sito A si lega il fattore di allungamento EF2 con legato GTP. Il primo tRNA ormai privo di amminoacido si stacca dal sito E ed esce dal ribosoma, mentre un nuovo amminoacil-tRNA si attacca al sito A, il GTP di EF2 è idrolizzato a GDP e EF2 si stacca dal sito A. Quindi il legame tra amminoacido e tRNA del sito P è trasferito tra gli amminoacidi dei tRNA tra A e P per formare un nuovo legame peptidico e così la sintesi va avanti sino a che il ribosoma non trova un codone di stop. Quando l' Rna si duplica permette alla cellula di far avvenire un processo di splicing. Quando il codone di stop è raggiunto nella fase di terminazione il ribosoma cattura una molecola d'acqua che idrolizza il polipeptide ormai completo il quale si distacca dal ribosoma. Il processo è coadiuvato da fattori di rilascio, proteine che simulano l'azione del tRNA, si legano al sito A e liberano la proteina nel citoplasma (fenomeno conosciuto come mimetismo molecolare). La sintesi delle proteine può avvenire molto rapidamente perché più ribosomi possono legarsi ad uno stesso filamento di mRNA consentendo quindi la costruzione simultanea di più catene proteiche. Un filamento di mRNA con più ribosomi è chiamata polisoma.

Nessun commento:

Posta un commento